Incident Management Playbook

This playbook is intended to provide an overview of IMS and how the system works and is designed to be read prior to training that the Blackrock 3 Partners would be providing. For questions regarding this document or any questions regarding IMS or the services of Blackrock 3, please e-mail: info@blackrock3.com
The Federal Emergency Management Agency (FEMA) defines an incident as “an occurrence or event, natural or human-caused, which requires an emergency response to protect life and property.” IT incidents, while not typically life threatening, may certainly threaten the livelihood of a business, cause financial loss, impact the company’s reputation and erode trust with its customers. To that end, an IT incident that requires an incident response will benefit from being managed by a clear system that every incident responder understands. Without defined rules of engagement, identified roles, responsibilities and clear leadership, the team managing the incident may lose track of time or struggle as a leaderless group with no sense of direction. In short, any type of incident will benefit from being managed using a well-defined system.

Fire Departments have long recognized the benefits of a flexible, scalable, command structure for managing emergency response to a wide variety of incidents. The concept of the Incident Management System (IMS) was developed more than 40 years ago, in the aftermath of a devastating firestorm in Southern California. The overall cost and loss associated with these fires totaled $18,000,000 per day ($110,000,000 per day in 2016 dollars) or $1,400,000,000 for the entire incident! Although all of the responding agencies cooperated to the best of their ability, numerous problems with command, control, communication, and coordination hampered their effectiveness.

As a result, Congress mandated that the U.S. Forest Service design a system that would “make a quantum jump in the capabilities of Southern California wildland fire protection agencies” to effectively coordinate interagency action and to allocate fire suppression resources in dynamic, multiple-fire situations. This resulting management framework, IMS, is in use in various forms around the world by federal, state, and local governments, public safety agencies, and some private sector hospitals and corporations. And while there may be subtle differences among them, they share a set of common operating principles. This is why IMS from the fire service translates to the IT environment; because all emergencies share the need to bring a team together quickly under focused and directed leadership to solve a problem in the shortest amount of time.

This *Incident Management System Playbook* is designed to give Site Reliability (SR) and Operations team members a working foundation to understand the basics of the IMS. In order to set the stage for implementing IMS, operating as an *Incident Commander (IC)*, or participating as a *Subject Matter Expert (SME)*, it is important to understand this fundamental concept:

When an incident occurs, all individuals responsible for resolving the problem must shift their thinking, decision-making, and operational posture from *Peacetime* to *Wartime*.
Peacetime is the Uptime steady state, system normal environment that exists in a non-emergency/incident mode. In short, it is business as usual.

Wartime is the Downtime incident mode of operation that occurs when any application or infrastructure element experiences a problem beyond the steady state, system normal usual course of business. In Wartime, responders must shift their sense of urgency and focus to the problem. Their language and methods of communication must be crisp and clear. All resources of the company should be available to the problem solving effort so they can protect reputation, customer trust and minimize financial impact.

In Wartime, the response team has to think and act as fast as the incident is unfolding. To do that, communications must be directed at a specific person or the function they represent, with a deadline for completing the task. Think about talking like you would post on Twitter – short, crisp and to the point.

Solving Wartime problems that threaten the livelihood of a company, no matter how large or small, requires Wartime mentality, behaviors, and organizational structure. IMS is the framework which allows the responders to form a high speed collaborative and cohesive incident response effort.

Boiled down to the most basic concepts, IMS provides a framework for incident response in order to:

- Size-up, triage and understand the problem
- Obtain the right talent at the right time to resolve the problem
- Organize that talent under an Incident Commander
- Provide a directed forum for that talent to digest data from tools and monitoring and engage in collaborative discussion, in order to develop a plan to resolve the problem
- Being mindful of time, collectively drive the incident toward resolution
- Investigate the technology failure and the incident response of the people in order to conduct a useful After Action Review (AAR)
- Use the AAR as a learning tool to reduce technology failures and improve the people part of the incident response
IMS is not a runbook or a recipe. It’s an approach and a framework for setting the rules of engagement for managing the responders. IMS is about how the people relate to each other when the stakes are high, the decision-making environment is poor, and the outcome of the incident is uncertain. IMS is an operating system for people that the IC uses once the incident responders are assembled and response is initiated.

Role of the Incident Commander

The anchor point for IMS is the position of IC. Without leadership and a process to organize and direct personnel and resources, the effort to solve any problem may end up being as chaotic as the problem itself.

For any incident to be successfully managed, there must be one person in charge – the IC.

The IC should:

- Have an accurate understanding of the problem, or focus the group discussion on gaining an accurate understanding. *The goal is not to get everyone thinking alike; the goal is to get everyone thinking in the same direction.*

- Develop an action plan with input from the right experts as needed.

- Have access to whatever pool of resources is required to resolve the problem.

- Establish reliable methods to communicate across the various disciplines handling the incident.

- Provide information to key stakeholders (executives, customers, vendors, etc.) in a timely manner.

The IC must stay focused on moving the incident toward an established end point. This is no easy task as many public safety ICs will quickly admit.
Additionally, ICs have the burden of wearing multiple hats during the course of an incident. Aside from organizing the incident responders, an IC may be fielding questions from executives regarding estimated downtime, updating internal communications, surveying customer experience, and releasing personnel from the incident who may be needed elsewhere in the company. These are very real demands made by others who may or may not appreciate the complexity of managing an incident. It becomes your task as an IC to accomplish many things at once.

A good incident response team is able to quickly transition from *Peacetime* to *Wartime* – perhaps several times a day – in order to bring a known incident response to an unknown *Downtime* problem and return the systems back to *Peacetime*. *The only variable should be the nature of the incident, not your response to it!*

It is also the IC’s job to:

- Prioritize the incoming flow of information.
- Focus the discussion and invite healthy conversation.
- Determine which items warrant direct attention and which ones can be delegated.

The IC is Responsible for Developing the Wartime Battle Plan for the Incident

There are certain objectives that must be met during the lifecycle of any incident. They are the milestones of an incident response achieved by good decision-making and action by the IC. There are four key actions areas an IC should address when directing the response using the **STAR** pneumonic:

- Size-up the problem
- Perform **Triage** to determine the severity
- Develop an **Action plan**
- Define **Recovery** and estimate the odds of the plan’s success
Regardless of the nature of the incident, it is critical to take the time to understand the problem or at least the presence of a problem as early as possible.

Size-up

Size-up involves gathering as much information (key metrics from monitoring tools, customer reports, etc) about the problem as quickly as possible. Without truly identifying the problem, IT incident responders are basing decisions on anecdotal information, speculation, and luck. The following suggested process is a way to determine Size-Up for any incident.

Initial Actions

1. Discovery of issue.
2. Evaluation of data from monitoring tools
3. Responder notification and/or escalation
4. Define severity (SEV) level, priority or impact.
5. Establish communications.
6. Establish command.
8. Define initial Incident Objectives (use the CAN format – see below).
9. Assign tasks by person or by their job function within a timeframe.
10. Notify others as appropriate for the SEV level.
11. Reassess situation

An easy way to remember the elements of Size-up can be found in the format of a **CAN** report:

- **Conditions** – What is happening?
- **Actions** – What is being done or needs to be done to solve the problem?
- **Needs – What resources are needed?**

CAN reports are excellent briefing tools and can be used in a variety of situations.

Triage

The answers to the questions listed above will help you more accurately assign an appropriate severity (SEV) level, which will bring a pre-planned, defined incident response. As the IC it is important to announce the SEV level clearly to everyone involved. This puts the problem in context so that all incident responders understand the urgency. If the severity of the problem changes, so must the SEV level, which should again be verbalized by the IC.

Figure 3 can be used as a quick guide to determine and communicate the severity of the situation to anyone working on the incident. An IC may say, “We are working a red box problem, let’s get another DBA on the line.” It’s certainly a shorthand guide to complex problems, but may be effective in helping anyone on the bridge quickly understand the severity of the situation.

![Figure 3: Potential impact of a given problem based on the frequency of occurrence and its severity.](image)

Events occurring in the green and yellow boxes are not categorized as incidents and are typically handled by an individual or a small group of incident responders. They may happen with a certain frequency and have minimal impact to the system or customers. In many cases green and yellow box issues are tickets or cases rather than incidents. Solutions are oftentimes evident and mostly require the incident responders to implement a known solution rather than figure out a plan based on conditions. Green and yellow box problems are typically defined by SEV 4 and SEV 3 events, or other non-emergencies.
Events occurring in the red and black boxes are the type and severity of incidents that benefit most from the use of the IMS. These types of incidents may be multi-faceted and/or have no clear-cut solution or may significantly impact services to customers. In short, these are situations that may likely require numerous different technology subject matter experts (SME) in the roles of incident responders and may go on for several hours or longer. There may be a need for extensive exploratory work necessary to craft an appropriate solution to figure out an appropriate solution. The problem may be unique – no clear cause for which there is no clear solution. An IC might look at a problem and quickly assign it a color designator from Figure 3, which will then correspond to a specific SEV level. Red box problems typically represent SEV 1 & 2 and black box problems can be viewed as SEV 0.

Act

The IC must develop – or facilitate the development of – a sound incident response plan based on facts and probabilities.

A good plan includes the following components:

- A clear size-up, triage, and understanding of the problem.
- A straightforward objective or set of objectives.
- Identification of the best and worst-case scenarios.
- Input and support of trustworthy and cooperative experts.
- A timeline.
- Continuous evaluation for progress and success.
- A back-up plan.

Recover

The final stages of many incidents are oftentimes ambiguous or poorly defined. It may not be clear that the incident is resolved and that a return to a normal state of operations (*Peacetime*) is uncertain. Many times, a piece of code may be written to provide a temporary fix – a way to place a bandage on the situation and get the system up and running but not really address the underlying problem. The IC must determine if the end state of the incident results in a return to
pre-incident conditions or some adaptive state. Either case might be acceptable, it is vital to the team to perform a comprehensive After Action Report (AAR) to determine the root cause(s) and reason(s) for the incident, along with how the human part of the emergency response was conducted.

Span of Control

If the incident requires more than a few incident responders, the command structure will need to grow accordingly. This is one of the key characteristics of IMS: it is modular and can scale up or down according to the size and severity of the incident.

Smaller incidents may require a bare bones command structure as you see in Figure 5. This example shows the org chart for a small group assembled to solve a low severity (green or yellow box) incident, perhaps a database problem with no customer impact. There is still an IC, even though there are not a lot of people working the issue. Again, it’s an incident, even though it’s believed to be small, the system is in place in case the incident grows in size or severity. In that case, the basic structure could ultimately look like what is seen in Figure 6 <<did not come through in formatting>>, in observance of another concept of the IMS called *span of control*.

Span of control, is the maximum number of people that one person can effectively supervise at a given time. This concept has been widely studied in many high-consequence, emergency situations. That is not to say that the recommended span of control must never be violated, but remember emergency situations are dynamic and can change. The IC role is initially filled by the first person on the bridge, but command can be transferred to any other person at any time. Incident command, just like any other function is fungible, meaning it can be moved from person to person to meet the needs of the incident. If a person more qualified comes on the bridge, command can be transferred to that person (more on this later). Figure 6 represents an example of what the IMS chart may look like for SEV 2 incident. The positions may differ from company to company but the concepts are the same.
You can see that there are number of incident responders working the problem. Imagine they are all on a conference bridge at the same time. Rather than the IC speaking directly with everyone, or everyone trying to compete for airtime, he or she might choose to organize the group into functions and appoint a leader. You can see that out of the 10 functions represented, the IC only directly interacts with the App Manager, DB Manager and Infrastructure. The scribe is a person charged with documenting the incident, and doesn’t technically report to the IC like the other functions. The IC might even consider moving the App Manager or DB Manager or Infrastructure to another conference bridge or some other form of communication method so as not to clutter up the main communications channel with deep technical talk by the Subject Matter Experts (SME).

If the incident continues to escalate, the chart can expand and add more functional groups (Figure 7), in this case Security and Disaster Recovery. As you can see, there would be a large number of responders on the bridge, but they are all organized in such a way that the IC maintains a reasonable span of control.
Figure 7: Org chart and reporting responsibilities for an incident of high severity.

Remember, smaller incidents require smaller management. Bigger incidents require more incident responders, thereby creating a greater need for larger management structures.

Delegate when necessary, but an IC should not give away the ultimate decision-making authority.

It should be said that the IC for the incident should remain the IC until relieved by a higher authority, or relinquish command to another IC for the next *operational period*. There is a process for this action, which is known as the transfer of command. When command is transferred to the next IC, the following actions will occur.

Verbalized on the incident conference bridge:

- A formal announcement on the bridge that command is being transferred.
- Provide Situational Status (SitStat). In this case, the same CAN report format is used as a briefing tool in this situation (different than the size-up phase), showing its usefulness as a template for constructing an information exchange.
Offline, between current and incoming IC:

- Identify command structure and assigned groups.
- Refine objectives and needed notifications.
- Refine timeline for mitigation.

IMS Terms and Definitions

The persons and responsibilities listed below form the Command Group. While it is possible during the initial stages of an incident that some duties may be combined, this is not recommended.

Incident Commander (IC) – is the leader of the incident: responsible for focusing the group, developing incident objectives, providing direction and time management. The IC may or may not be the person that initially establishes the incident bridge, and may not be the most senior person in the *Peacetime* org chart. It is not necessary for the IC to be the deepest technical expert in the problem area. The IC must be an expert in the process and function of incident command. All significant actions are to go through the IC. This person shall remain the IC for the duration of the event or until command is transferred to another person or IC. Formal transfer of command information should be exchanged prior to the new IC taking charge.

Communications Officer (Comms) – is the person responsible for all incident responder notifications and may also assist the IC with issuing executive briefings or stakeholder notifications. When the IC needs to reach an SME or executive, the Comms Officer should be tasked with making the notifications.

Situational Status (SitStat) – also known as the scribe and is the person who is recording all of the information related to the event. They are responsible for keeping track of the Situational Status (SitStat), updating IRC or other forms of incident documentation.

Operations (OPS) – When the span of control greatly exceeds 5-7 direct reports to the IC an operations lead may be appointed. The Operations lead handles the tactical objectives, which are driven by the Incident Commander’s strategic goals. When OPS is established many of the direct reports that were going to the IC would now report to OPS. The OPS officer directs most of the operations involved in the incident. When the span of control exceeds 5-7 direct reports for OPS then groups should be established which then report to OPS.
Plans Group (Plans) – is a group that is established by the IC on large scale or complex incidents and does not need to reside within the Technical Operations Team. The Plans group is comprised of SMEs who are trying to think several steps ahead of the incident planning. While the IC and the personnel are involved in actively trying to resolve the problem, Plans listens to the activity and war-games alternative plans and contingencies. Plans does not actively participate in the Plan A problem solving effort. Their function is to war-game potential outcomes of the tactics employed (i.e., what could go wrong if they take action A? What should Plans B, C, and D be? What are the advantages/disadvantages to these plans?)

Subject Matter Experts (SME) – are human resources supporting and working with the IC, even if during *Peacetime* operations the SME may be the supervisor of the IC. When operating in incident mode (*Wartime*) using IMS, the IC is in charge. The number of SMEs required will be based upon the conditions identified. The IC should attempt to identify the nature and assign SMEs based on this assessment. The SME group will vary from company to company and may be a globally distributed workforce. In larger companies with complex environments, SME’s called to an incident bridge may be many time zones away and not personally acquainted with the IC or anyone else on the bridge.

Operational Period - A defined period of time, set by the IC, that certain operational objectives are pursued or informational briefings are set. Operational briefings are useful as they create a defined timeframe and set of behavioral objectives are outlined for the entire group of responders.

Escalation - The addition of additional subject matter experts, teams, outside vendors, etc., beyond an initial call out, required to resolve an incident. As an example, the IC may need more or different DBA’s on an incident, so he/she would escalate to those additional resources. Escalation can also mean to notify or otherwise contact internal stakeholders inside the company at a higher level than the IC. This could include escalating an incident to company executives.

Event - A point-in-time fact (relevant to the operations of your infrastructure or application), e.g. CPU crossed the 95% threshold on host-abc, Change #1234 successfully deployed to host-abc.

Alert - Represents the state of a monitoring tool check/condition (initiated/resolved by an Event) e.g. from Pingdom - your website is *currently* DOWN.

Incident - A customer or business impacting issue. (Per ITIL: “An unplanned interruption to an IT Service or reduction in the quality of an IT service.”)

Notification - A message (urgent or otherwise) sent to a channel (e.g. SMS, Phone, Email), usually related to an Alert or Incident.